
CMSC389E Akilesh Praveen

CMSC389E Project 1:
Arithmetic Logic Unit- Logic Gates
Assigned Friday February 4

Due Thursday February 10

1 The First (Real) Project
Objective: Understand how to build different types of logical gates within Minecraft

and what they output.

Welcome to the first project for 389E! Now, we get to finally start building our major
computing circuits. It’s imperative that you have completed Project 0 by this point; if you
haven’t, this would be a great time to talk to your instructors and let them know! They can
get you up to speed.

The words of the day are Logic Gates. That’ll be the main focus of this project, and
we recommend taking a deeper look at them in case you need a review. Specifically, refer to
Chapters 2.1 through 2.6 of the online textbook.

What follows is a quick reminder of the cumulative nature of projects, a conceptual
overview of what our project will cover, and the project specification itself.

1.1 Projects are Cumulative

Before we start, let’s just go ahead and review project policy- projects in this class are
cumulative. That is, they build on top of one another. (Except for this first one) This is
only natural, as we’re working towards building a fully featured computer at the end of the
semester.

However, as we’re not sadists, we will be releasing solutions for projects after they are
due- which you can use as a basis for subsequent projects. We have deliberately created
this model so that if one project does not go well for you, you will not be high and dry for
the next one(s). You may not turn in a project’s solution as your solution for that same
project- you may only use it for subsequent projects. Examples:

• OK- Building your Project 5 on top of the instructor provided Project 4 Solution and
turning it in as your own Project 5 submission

• NOT OK- Turning in the Project 3 instructor provided Solution as your own Project
3 submission

https://cmsc-389e.github.io/digital-logic-computer-architecture-minecraft/index.html


CMSC389E Akilesh Praveen

2 Conceptual Overview: The ALU
Each project moving forward will usually have a Conceptual Overview section, where

we provide a few interesting tidbits of information about the focus of the project this week.
You can usually skip it if you’re in a hurry, but it’s a great place to get some background
information on the project that you’ll be building.

The Arithmetic Logic Unit, or ALU is where all the fancy math and logical op-
erations on a computer happen, and it’s housed in the CPU. In our case (and in the case
of general computer architecture), this is pretty much limited to logical & arithmetic
operations on integers. To perform these functions on floating point numbers, one would
usually make use of a Floating Point Unit.

At the end of the day, all computers have to do math- usually a huge amount of it.
Housed inside the CPUs of computers are usually multiple ALUs, all working at incredibly
fast speeds to perform the functions requested of them.

If you’re interested, my challenge for you is to take a look online and see where the
ALU is physically located in the chip on the computer (or phone!) that you’re reading this
project spec on.

3 Building the Logical Portion of the ALU
In our case, we’re going to start with the ALU when building our big CPU in Minecraft.

We’re going to split it up into a few parts, but you’ll see why. Our ALU is going to be the
real brains of the operation and it’s going to have quite a few capabilities, but we’re going
to take it step by step.

The first thing that we’ll be doing- the topic of this project- will be the logical
operations, i.e. AND, OR, NOT, XOR.

First, you’re going to want to load the project up. Do this using the following:

/test load 1

Before we start putting this project together for real, we’re going to have to discuss
buses. This is how we are going to handle wire management for our inputs and our outputs.

Take a look at the input and output blocks that you have available. You’ll notice that
you have the following inputs: iA0, iA1, iA2 and iB0, iB1, iB2.

This is where all of your inputs will come in. You’ll also find that you have a huge set
of output blocks (sorry!). This is normal. Your goal is going to be, for each logical function
in the set of NOT, AND, OR and XOR, perform the given function on the three sets of inputs,
so that we can effectively have each of the logical operations done on 3-bit inputs.



CMSC389E Akilesh Praveen

Here’s an example. Suppose we were building the 3 AND gates. You’d want to have
your circuit fulfill the following logical formulae:

iA0 ∧ iB0 → oAND0

iA1 ∧ iB1 → oAND1

iA2 ∧ iB2 → oAND2

You’ll want to fulfill these logical requirements for all of the given logic gates as well.
Overall, you’ll be building 3 of each gate- which, by the way, isn’t just an arbitrary number.
We’re working towards a 3-bit computer here, so we need the ability to perform all sorts of
operations on 3-bit numbers in general. Hence, the ability to take in 3 bits of input and
produce 3 bits of output.

4 Schematics
Here’s how this would look in a schematic, if we were to visualize this. You’ll find the

schematic setups for each gate as follows.

iA0 iA1iA2 iB0 iB1iB2

oAND0

oAND1

oAND2

Notice how the input wires for iA0, iA1, iA2, iB0, iB1, iB2 can be continued down-
wards. This was done on purpose. You will have to repeat this process for the OR and XOR

gates below this.

Here is the diagram for OR. Assume that the wires for the inputs are simply continued
from above. That is, this can go either above or below the circuits in the above diagram and
we should be fine.



CMSC389E Akilesh Praveen

iA0 iA1iA2 iB0 iB1iB2

oOR0

oOR1

oOR2

As you could guess, the diagram for what you need to build for XOR looks pretty much
identical. Again, you will be extending the input wires downwards, so the result will be 6
very long wires (with repeaters to preserve the signal) going downwards, with all these logic
gates branching off of them.

iA0 iA1iA2 iB0 iB1iB2

oXOR0

oXOR1

oXOR2

Finally, we can tackle NOT, which is probably the easiest of all of them. It’s a bit of a
special gate, as we only need to negate the input, and nothing else.

We’ll be taking iA0, iA1, and iA2, and negating their output, then sending that into
oNOT0, oNOT1, and oNOT2.

The diagram is below. Note that for this gate, you will not have to extend the buses
for the B output wires for this gate- however, we do recommend you do, as it might help you
with future projects.

iA0 iA1iA2

oNOT0

oNOT1

oNOT2

Stamp

Stamp

Stamp



CMSC389E Akilesh Praveen

You will be doing all of these one after the other, with the 6 input gates extended down
all the way.

5 Submission

You will be submitting this in the same way that you did for the previous project.
First, run the test start command.

/test start

Remember, the six inputs all have to be connected to the (4 × 3) logic gates at the
same time. The tests will ensure that all your connections are hooked up correctly.

As always, attach a screencap of your tests passing, along with a zip file of your world
in the assignment submission. Ask on Piazza if you have any questions!


	The First (Real) Project
	Projects are Cumulative

	Conceptual Overview: The ALU
	Building the Logical Portion of the ALU
	Schematics
	Submission

